1. First notice that

$$
\frac{x^{2}-4}{x^{2}-5 x+6}=\frac{(x-2)(x+2)}{(x-2)(x-3)}
$$

This function is undefined at $x=2$. Since, in the limit as $x \rightarrow 2^{-}$, we only care about what happens near $x=2$ (an for x less than 2), we can cancel

$$
\lim _{x \rightarrow 2^{-}} \frac{x^{2}-4}{x^{2}-5 x+6}=\lim _{x \rightarrow 2^{-}} \frac{x+2}{x-3}=\frac{4}{-1}=-4
$$

2. As $x \rightarrow 0^{+}$, the numerator of our expression approaches -9 , while the denominator approaches 0 . This implies that this limit cannot be finite. The only remaining question is whether the answer is $\pm \infty$. When x is near 0 , our denominator is near -9 , i.e. it is negative. When x is near zero and greater than zero, $\sin x$ is near zero and positive. Hence for x near zero and positive, the expression is negative, and so the answer is $-\infty$.
3. We multiply the expression the limit by its conjugate to see that

$$
\begin{aligned}
\left(\sqrt{x^{2}-x}-\sqrt{x^{2}+5 x}\right)\left(\frac{\sqrt{x^{2}-x}+\sqrt{x^{2}+5 x}}{\sqrt{x^{2}-x}+\sqrt{x^{2}+5 x}}\right) & =\frac{\left(x^{2}-x\right)-\left(x^{2}+5 x\right)}{\sqrt{x^{2}-x}+\sqrt{x^{2}+5 x}} \\
& =\frac{-6 x}{|x|\left(\sqrt{1-\frac{1}{x}}+\sqrt{1+\frac{5}{x}}\right)}
\end{aligned}
$$

It follows that

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-x}-\sqrt{x^{2}+5 x}\right)=\lim _{x \rightarrow \infty} \frac{-6 x}{|x|\left(\sqrt{1-\frac{1}{x}}+\sqrt{1+\frac{5}{x}}\right)}=\lim _{x \rightarrow \infty} \frac{-6}{\sqrt{1-\frac{1}{x}}+\sqrt{1+\frac{5}{x}}}=-3
$$

4. The function f as defined is differentiable on $(-\infty, 0)$ and $(0, \infty)$ for any value of a. We need to choose a such that f is differentiable at $x=0$. We require that both the right and left-hand limits in the definition of derivative agree at $x=0$. We compute

$$
\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{\left(h^{2}+1\right)-1}{h}=\lim _{h \rightarrow 0^{+}} \frac{h^{2}}{h}=0 .
$$

While,

$$
\lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{-}} \frac{(a h+1)-1}{h}=\lim _{h \rightarrow 0^{-}} \frac{a h}{h}=a .
$$

It follows that we require $a=0$ if we want $f^{\prime}(0)$ to exist.
5. We first note that

$$
\frac{\tan 2 x}{\sin 3 x}=\left(\frac{1}{\cos 2 x}\right)\left(\frac{\sin 2 x}{\sin 3 x}\right) .
$$

Since $\lim _{x \rightarrow 0} \cos 2 x=1$, it follows that

$$
\lim _{x \rightarrow 0} \frac{\tan 2 x}{\sin 3 x}=\left(\lim _{h \rightarrow 0} \frac{1}{\cos 2 x}\right)\left(\lim _{h \rightarrow 0} \frac{\sin 2 x}{\sin 3 x}\right)=\lim _{h \rightarrow 0} \frac{\sin 2 x}{\sin 3 x}
$$

To evaluate this last limit we note that

$$
\frac{\sin 2 x}{\sin 3 x}=\left(\frac{\frac{\sin 2 x}{2 x}}{\frac{\sin 3 x}{3 x}}\right)\left(\frac{2 x}{3 x}\right)
$$

now using the fact that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ (an more generally that $\lim _{x \rightarrow 0} \frac{\sin k x}{k x}=1$ for any k), we get that

$$
\lim _{x \rightarrow 0} \frac{\tan 2 x}{\sin 3 x}=\left(\lim _{x \rightarrow 0} \frac{\frac{\sin 2 x}{2 x}}{\frac{2 x}{\sin 3 x}} 3 x\left(\lim _{x \rightarrow 0} \frac{2 x}{3 x}\right)=\frac{2}{3} .\right.
$$

6. We first notice that

$$
\sqrt{4 x^{2}+x+1}=\sqrt{\left(4 x^{2}\right)\left(1+\frac{1}{4 x}+\frac{1}{4 x^{2}}\right)}=2|x| \sqrt{1+\frac{1}{4 x}+\frac{1}{4 x^{2}}}
$$

So it follows that

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}+x+1}}{3 x-1} & \lim _{x \rightarrow-\infty} \frac{2|x| \sqrt{1+\frac{1}{4 x}+\frac{1}{4 x^{2}}}}{3 x\left(1-\frac{1}{3 x}\right)} \\
& =\left(\lim _{x \rightarrow-\infty} \frac{2|x|}{3 x}\right)\left(\lim _{x \rightarrow-\infty} \frac{\sqrt{1+\frac{1}{4 x}+\frac{1}{4 x^{2}}}}{1-\frac{1}{3 x}}\right) \\
& =\left(-\frac{2}{3}\right)(1) \\
& =-\frac{2}{3}
\end{aligned}
$$

Here we've used the fact that when x is negative, $\frac{|x|}{x}=-1$.
7. We perform implicit differentiation on the equation

$$
x^{2}+4 y^{2}=5
$$

to yield the equation

$$
2 x+8 y \frac{d y}{d x}=0
$$

Now setting $x=1$ and $y=-1$ yields the equation

$$
2-8 \frac{d y}{d x}=0
$$

or $\frac{d y}{d x}=\frac{1}{4}$. This is the slope of the tangent line to the ellipse at $(1,-1)$. It follows that the tangent line has point-slope form

$$
y+1=\frac{1}{4}(x-1) \Rightarrow y=\frac{1}{4} x-\frac{5}{4}
$$

8. Since $F(x)=f(g(x))$, the chain rule gives that

$$
F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

So

$$
F^{\prime}(2)=f^{\prime}(g(2)) g^{\prime}(2)=f^{\prime}(-1) \times 5=2 \times 5=10
$$

9. The chain rule gives

$$
y^{\prime}=8(\sin 4 x)^{7} \frac{d}{d x}(\sin 4 x)=32(\sin 4 x)^{7} \cos 4 x
$$

10. We compute the first two derivatives

$$
y^{\prime}=x^{4}+x^{3}
$$

and

$$
y^{\prime \prime}=4 x^{3}+3 x^{2}=x^{2}(4 x+3)
$$

Our candidates for inflection points are points where the second derivative is zero, which is at $x=0$ and $x=-\frac{3}{4}$. The quantity x^{2} is always positive, while $4 x+3$ is negative for $x<-\frac{3}{4}$ and positive for $x>-\frac{3}{4}$. It follows that our original function is concave down for $x<-\frac{3}{4}$ and concave up for $x>-\frac{3}{4}$. Hence there is only one inflection point.
11. We implicitly differentiate the expression

$$
\sqrt{x^{2}+y^{2}}=2+y
$$

and get

$$
\frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2}\left(2 x+2 y \frac{d y}{d x}\right)=\frac{d y}{d x}
$$

Plugging in $x=4$ and $y=3$ gives

$$
\frac{1}{2}(25)^{-1 / 2}\left(8+6 \frac{d y}{d x}\right)=\frac{d y}{d x}
$$

or

$$
\frac{1}{10}\left(8+6 \frac{d y}{d x}\right)=\frac{d y}{d x}
$$

This equation has solution $\frac{d y}{d x}=2$.
12. We consider a right triangle with base x and height 100 . Let θ be the angle such that $\tan \theta=\frac{100}{x}$, or $x \tan \theta=100$. Here x and θ are functions of time. When the hypotenuse of our triangle is 200 , the Pythagorean Theorem implies that $x=100 \sqrt{3}$, and so $\theta=\frac{\pi}{6}$. To find the expression that relates our rates, we differentiate (with respect to t) the equation

$$
x \tan \theta=100
$$

to get

$$
\frac{d x}{d t} \tan \theta+x \sec ^{2} \theta \frac{d \theta}{d t}=0
$$

Plugging in $x=100 \sqrt{3}, \theta=\frac{\pi}{6}$, and $\frac{d x}{d t}=16$, we get that

$$
16\left(\frac{\sqrt{3}}{3}\right)+100 \sqrt{3}\left(\frac{4}{3}\right) \frac{d \theta}{d t}=0
$$

or $\frac{d \theta}{d t}=-\frac{1}{25}$.
13. We note that

$$
f^{\prime}(x)=\frac{1}{2}\left(10-x^{2}\right)^{-1 / 2}(-2 x)
$$

and so $f^{\prime}(-1)=\frac{1}{3}$. Also note that $f(-1)=3$. It follows that the linearization of f at $a=-1$ is

$$
L(x)=3+\frac{1}{3}(x+1)
$$

14. We could rewrite f as

$$
f(x)=\left\{\begin{array}{cc}
2 x-x^{2}-1 & x \geq 0 \\
-2 x-x^{2}-1 & x<0
\end{array}\right.
$$

Note that f is not differentiable at $x=0$ (since $|x|$ is not) and so f has a critical point at $x=0$. For $x<0$, we have

$$
f^{\prime}(x)=-2-2 x
$$

which is zero at $x=-1$. For $x>0$, we have

$$
f^{\prime}(x)=2-2 x
$$

which is zero at $x=1$. So our critical points are $x=0,-1,1$. It follows from looking at the sign of our expression for f^{\prime} above that f is increasing on $(-\infty,-1) \cup(0,1)$, while f is decreasing on $(-1,0) \cup(1, \infty)$. By the first derivative test, this implies that we have local maxes at $x= \pm 1$, and a local minimum at $x=0$.
15. Note that $x=1$ is not a root of the numerator and so we cannot factor out an $(x-1)$ from the numerator to cancel that in the denominator. Hence our function has a vertical asymptote at $x=1$. By polynomial long division we have

$$
\frac{2 x^{2}+x+1}{x-1}=2 x+3+\frac{4}{x-1},
$$

and so our function has a slant asymptote of $y=2 x+3$. Finally, since

$$
\lim _{x \rightarrow \infty} \frac{2 x^{2}+x+1}{x-1}=\infty \quad \lim _{x \rightarrow-\infty} \frac{2 x^{2}+x+1}{x-1}=-\infty
$$

we have no horizontal asymptotes.
16. The distance of an arbitrary point (x, y) from the point $(2,0)$ is given by

$$
d=\sqrt{(x-2)^{2}+y^{2}} .
$$

When our points are constrained to be on the hyperbola $y^{2}-x^{2}=4$, we can make the substitution $y^{2}=x^{2}+4$ to get

$$
d(x)=\sqrt{2 x^{2}-4 x+8} .
$$

We differentiate the above to find that

$$
d^{\prime}(x)=\frac{2 x-2}{\sqrt{2 x^{2}-4 x+8}},
$$

and so d has a critical point when $x=1$. This is a minimum, since it is clearly not a maximum (points can be arbitrarily far away from $(2,0)$ on the hyperbola). So when $x=1$, we have $y^{2}=5$, and so our two point where the distance is minimized are $(1, \pm \sqrt{5})$.
17. If we denote the dimensions of the page as h and w (for height and width), then we have that the printed area will have the formula

$$
P=(w-2)(h-3) .
$$

We have the constraint

$$
150=h w
$$

which allows us to make the substitution $w=\frac{150}{h}$, yielding

$$
P(h)=\left(\frac{150}{h}-2\right)(h-3)=156-2 h-\frac{450}{h} .
$$

Differentiating gives

$$
P^{\prime}(h)=-2+\frac{450}{h^{2}} .
$$

We note that a critical point occurs at $h=15$. When $h=15$, then $w=10$. This is a maximum because the extremes ($h=3$ and $w=50$ or $h=75$ and $w=2$) yield no printed area.
18. We set $f(x)=x^{3}-x-1$ and note that $f(1)=-1$ while

$$
f^{\prime}(x)=3 x^{2}-1
$$

and so $f^{\prime}(1)=2$. It follows that

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=1-\frac{f(1)}{f^{\prime}(1)}=1-\frac{-1}{2}=\frac{3}{2} .
$$

19. Recall that, using the limit of the right-endpoint approximations,

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f(a+i \Delta x) \Delta x
$$

where $\Delta x=\frac{b-a}{n}$. It looks like that if we set $f(x)=\sec ^{2} x, a=0$, and $\Delta x=\frac{\pi}{4 n}$ (which implies that $b-a=\frac{\pi}{4}$, or $b=\frac{\pi}{4}$), then

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sec ^{2}\left(\frac{i \pi}{4 n}\right) \frac{\pi}{4 n}=\int_{0}^{\pi / 4} \sec ^{2} x d x
$$

20. If we set

$$
F(x)=\int_{0}^{x} \cos \left(u^{2}\right) d u
$$

then the FTC gives that $F^{\prime}(x)=\cos \left(x^{2}\right)$. Now $f(x)=F(5 x)$, and so by the chain rule

$$
f^{\prime}(x)=5 F^{\prime}(5 x)=5 \cos \left(25 x^{2}\right)
$$

21. Set $u=x^{2}$, in which case $d u=2 x d x$. Now when $x=0, u=0$; while when $x=\sqrt{\pi}, u=\pi$. It follows by substitution

$$
\int_{0}^{\sqrt{\pi}} x \sin \left(x^{2}\right) d x=\frac{1}{2} \int_{0}^{\pi} \sin u d u=\frac{1}{2}\left(-\left.\cos u\right|_{0} ^{\pi}=1 .\right.
$$

22. The curve $y=x^{2}-4 x=x(x-4)$ has x-intercepts at $x=0$ and $x=4$ and is concave up. It intersects the curve $y=2 x$ at $x=0$ and $x=6$. It follows that the curve $y=2 x$ lies above the curve $y=x^{2}-4 x$ between $x=0$ and $x=6$. Therefore, the area between the curves is given by

$$
A=\int_{0}^{6}\left(2 x-\left(x^{2}-4 x\right)\right) d x
$$

23. The curve $y=x-x^{2}$ is concave down and has x-intercepts $x=0$ and $x=1$. Hence the region in question is bounded by the curve $y=x-x^{2}$ above, $y=0$ below, and extends between $x=0$ and $x=1$. We use the method of cylindrical shells. When we rotate around the line $x=7$, each cylindrical shell has height $x-x^{2}$, thickness $d x$, and radius $7-x$. So the volume of the solid is

$$
\int_{0}^{1} 2 \pi(7-x)\left(x-x^{2}\right) d x=2 \pi \int_{0}^{1}(7-x)\left(x-x^{2}\right) d x
$$

24. Note that the intersection of the curves occurs at when $2=2+2 x-x^{2}$, or $2 x-x^{2}=0 \ldots$ at $x=0$ and $x=2$. Since the curve $y=2+2 x-x^{2}$ is concave down, it follows that the curve $y=2+2 x-x^{2}$ lies above the curve $y=2$ between $x=0$ and $x=2$. It follows that the solid indicated has cross-sections perpendicular to the x-axis which are annuli, with outer radius $2+2 x-x^{2}$ and inner radius 2 . Hence the volume is

$$
\int_{0}^{2} \pi\left(\left(2+2 x-x^{2}\right)^{2}-4\right) d x
$$

25. The average value of a function f on the interval $[a, b]$ is given by

$$
f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x .
$$

Hence we are looking for the value of the integral

$$
\frac{1}{8} \int_{0}^{8} \sqrt{16-2 x} d x
$$

We make the substitution $u=16-2 x$, in which case $d u=-2 d x$ and so

$$
\frac{1}{8} \int_{0}^{8} \sqrt{16-2 x} d x=-\frac{1}{16} \int_{16}^{0} u^{1 / 2} d u=-\frac{1}{16}\left(\left.\frac{2}{3} u^{3 / 2}\right|_{16} ^{0}=\left(\frac{1}{16}\right)\left(\frac{2}{3}\right)(16)^{3 / 2}=\frac{8}{3}\right.
$$

